Effective Singing Voice Detection in Popular Music Using Arma Filtering

نویسندگان

  • Hanna Lukashevich
  • Matthias Gruhne
  • Christian Dittmar
چکیده

Locating singing voice segments is essential for convenient indexing, browsing and retrieval large music archives and catalogues. Furthermore, it is beneficial for automatic music transcription and annotations. The approach described in this paper usesMel-Frequency Cepstral Coefficients in conjunction with Gaussian Mixture Models for discriminating two classes of data (instrumental music and singing voice with music background). Due to imperfect classification behavior, the categorization without additional post-processing tends to alternate within a very short time span, whereas singing voice tends to be continuous for several frames. Thus, various tests have been performed to identify a suitable decision function and corresponding smoothing methods. Results are reported by comparing the performance of straightforward likelihood based classifications vs. postprocessing with an autoregressive moving average filtering method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing audio descriptors for singing voice detection in music audio files

Given the relevance of the singing voice in popular western music, a system able to reliable identify those portions of a music audio file containing vocals would be very useful. In this work, we explore already used descriptors to perform this task and compare the performance of a statistical classifier using each kind of them, concluding that MFCC are the most appropriate. As an outcome of ou...

متن کامل

Pitch Estimation of Singing Voice From Monaural Popular Music Recordings

A singing voice separation system is a hard yet popular task in the field of music information retrieval (MIR). If successfully separated, a number of algorithms can be applied to vocal melody for any possible application. In this study, we applied a pitch estimation algorithm after separating a singing voice from background music based on the implementation of REPET [1]. Then we evaluated our ...

متن کامل

Singing Voice Separation from Monaural Music Based on Kernel Back-Fitting Using Beta-Order Spectral Amplitude Estimation

Separating the leading singing voice from the musical background from a monaural recording is a challenging task that appears naturally in several music processing applications. Recently, kernel additive modeling with generalized spatial Wiener filtering (GW) was presented for music/voice separation. In this paper, an adaptive auditory filtering based on β-order minimum mean-square error spectr...

متن کامل

Cross-Version Singing Voice Detection in Classical Opera Recordings

In the field of Music Information Retrieval (MIR), the automated detection of the singing voice within a given music recording constitutes a challenging and important research problem. In this study, our goal is to find those segments within a classical opera recording, where one or several singers are active. As our main contributions, we first propose a novel audio feature that extends a stat...

متن کامل

Spectro-temporal modulation based singing detection combined with pitch-based grouping for singing voice separation

A spectro-temporal modulation based singing voice detection cascaded with a Viterbi based pitch tracking algorithm is proposed in this paper for singing-voice separation from monaural recordings. To detect the singing voice, the spectrotemporal modulation energy related to voice harmonics is extracted using a spectro-temporal modulation analysis framework developed for the Fourier spectrogram. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007